UNSEEN THREATS OF TRADE TO FLORIDA'S BIODIVERSITY

FWC's RANA 2022, 26 October 2022

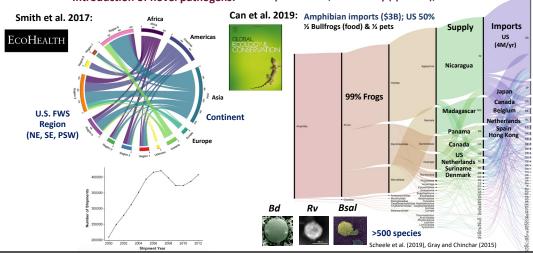
Matthew J. Gray **University of Tennessee**

🦺 Josh's Frogs

Partners:

Collaborators:

- Neelam Poudyal and Nina Fefferman, University of Tennessee
- Jesse Brunner and Jonah Piovia-Scott, Washington State University
- Alexa Warwick, Michigan State University
- Molly Bletz, University of Massachusetts-Amherst
- Julie Lockwood, Rutgers University
- Josh Jones, Pet Advocacy Network
- Josh Willard, Zach Brinks, Josh's Frogs
- Mark George, Neil Moherman, Reptiles by Mack



Wildlife Trade and Pathogens

- Wildlife Trade = \$300B annual, 2B specimens/yr (1/3 live), ~1000 species, 180 nations
- High-income Countries (USA, EU) drive market demand
- No U.S. programs or regulations to support clean (healthy) trade of wildlife (Ag: OIE/USDA)
- Introduction of novel pathogens: Industry economics; biodiversity (spillover); human health

Amphibian Pathogens in Legal Trade

From 2000-2006, 25 million <u>live</u> amphibians (4M/yr) imported to USA (Smith et al. 2009, Schloegel et al. 2009) – American bullfrogs (50%)

8 – 62% Rv, Bd US Imports

First Evidence of Amphibian Chytrid Fungus PLOS ONE (Batrachochytrium dendrobatidis) and Ranavirus in Hong Kong Amphibian Trade

Jonathan E. Kolby^{1,2}*, Kristine M. Smith², Lee Berger¹, William B. Karesh², Asa Preston³, Allan P. Pessier³, Lee F. Skerratt¹

•Hong Kong = 12-57% Bd, Rv infected

3

Amphibian Pathogens in Illegal Trade

Batrachochytrium dendrobatidis in amphibians confiscated from illegal wildlife trade and used in an ex situ breeding program in Brazil

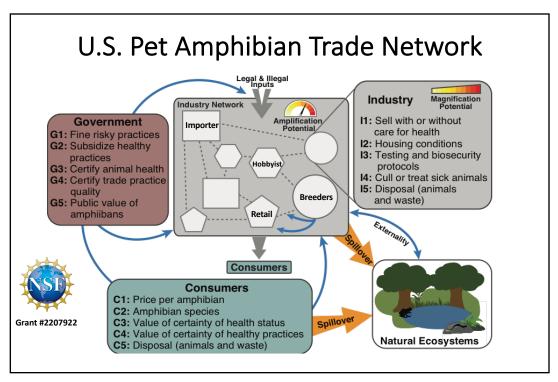
Dendrobates tinctorius

C. D. De Paula^{1,*}, E. C. Pacífico-Assis², J. L. Catão-Dias¹

67% infected with Bd

SOURCE OF THE PROPERTY OF T

Batrachochytrium dendrobatidis in Confiscated Telmatobius in Lima, Peru


Samanta Zevallos,^{1,5} Roberto K. Elías,^{2,3} Raúl A. Berenguel,³ Thomas J. Weaver,² and Richard P. Reading⁴ ¹Universidad Científica del Sur, Km 19 Panamericana Sur, Villa El Salvador, Lima, Perú; ²Denver Zoological Foundation, 2300 Steele St., Denver, Colorado 80205, USA; ³Universidad Peruana Cayetano Heredia, 430 Honorio Delgado St., San Martín de Porres, Lima, Perú; ⁴University of Denver, 2199 S University Blvd., Denver, Colorado 80208, USA; ⁵Corresponding author (email: samanta.zevallos@gmail.com)

2016

Telmatobius

60% infected with Bd

Emerging Infectious Diseases: Amphibians

Batrachochytrium dendrobatidis (Bd)

- Discovered 1997; Global
- >90 Species Extinctions (frogs)
- Epidermal hyperplasia: skin thickens
- **Osmoregulation: Electrolytes**

Transmission: 1 contact sufficient; Environmental Persistence: 3 – 14 day $R_0 = 3 - 10$; Rapid Invasion

Ranavirus (FV3: Type Species)

- Discovered 1965; 6 Species; Global
- **Severe Declines in Wild and Captivity**
 - Amphibians (>100 spp), Reptiles (>30), Fish (>50)
- **Hemorrhagic Disease**
- Liver, spleen, kidney, brain

Batrachochytrium salamandrivorans (Bsal):

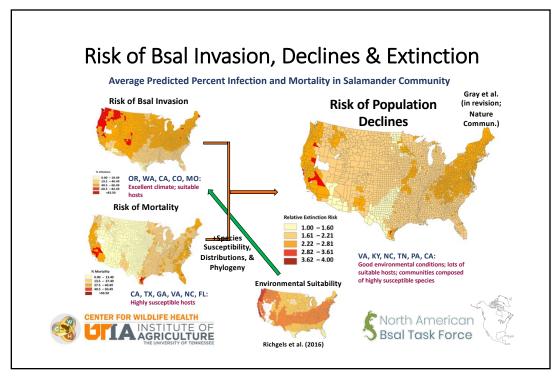
- Discovered 2013; Europe/Asia
- **Severe Population Declines (salamanders)**
- **Epidermal Necrotic Ulcerations: holes in skin**
- Osmoregulation, Respiration, Bacterial

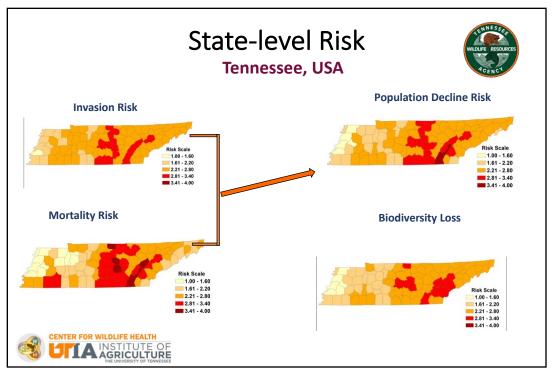
GRSM National Park. Cades Cove, Gourley Pond

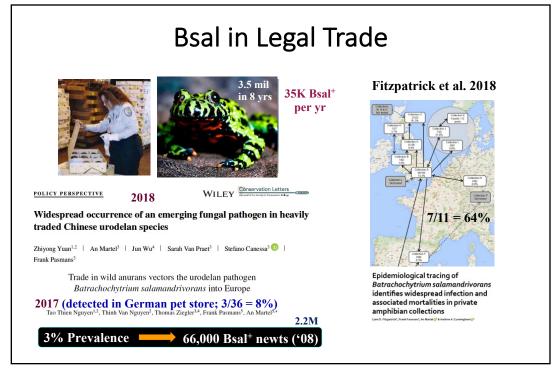
Species Susceptibility to Bsal

36 Species (10 Families)

- 72% Species became Infected
 - Newt and Lungless Salamanders (Salamandridae, Plethodontidae)
 - 5 of 9 Frog Species (52%; Cuban tree frog) Mexican axolotl (endangered; medical and pet trade)
- 36% Species (41% Sal) developed Bsal chytridiomycosis
 - 4 of 5 Newt species (Notophthalmus, Taricha)
 - 2 of 2 Arboreal Salamanders (Aneides aeneus, A. hardii)
 - 2 of 3 Brook Salamanders (Eurycea, endemic genus to eastern NA)
 - 2 subspecies of Ensatina (West Coast: yellow-blotched and large-blotched)
 - 2 species from Mexico (Aquiloeurycea, Chiropterotriton)
 - 2 Frog species (Cuban tree frog and eastern spadefoot)


Significant


>60 Species in U.S. and >140 Species in North America **Could Experience Declines or Extinctions**



Gray et al. (in revision; Nature Communications)

University of Tennessee One Health Initiative Seed Grant Objectives

https://tiny.utk.edu/pijac

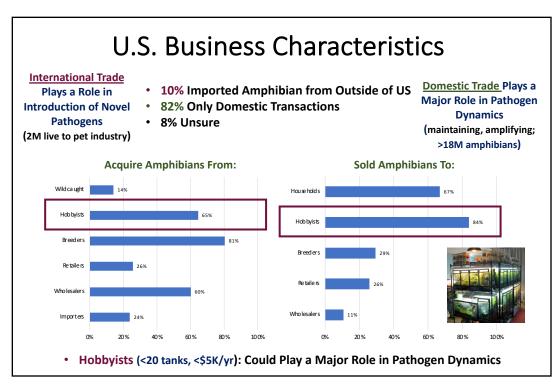
- 1. Evaluate **business husbandry and biosecurity practices** and knowledge of disease threats in amphibian trade.
- 2. Evaluate **consumer preferences** and knowledge of disease threats in amphibian trade.
- Obtain preliminary estimates of pathogen prevalence in illegal and legal trade pathways for the U.S. amphibian pet industry (confiscations, borders, trade nodes).
- Build a simplified model to determine optimal locations in the trade network to sample, and identify which factors should be measured to detect changes in disease dynamics.

Methods

INNOVATIVE SOLUTIONS TO REDUCE DISEASE RISK IN AMPHIBIAN TRADE

https://tiny.utk.edu/pijac

- Partnership with PAN and two prominent retail businesses
- Anonymous and voluntary survey (using Qualtrics) in summer 2021 (UTK IRB-21-06494-XM Protocol)
- Recruitment through email, online presence, and industry trade shows
- n = 103 businesses and n = 393 consumers


Questions Focused on:

• Characteristics (e.g., businesses: size [annual sales], trade partners; consumers: education, acquisition, price per amphibian).

Business and Consumers

- Knowledge of Amphibian Pathogens and Threat of Spillover
- Biosecurity and Husbandry Practices
- Willingness to Pay for Clean Trade (certified, pathogen-free amphibians)

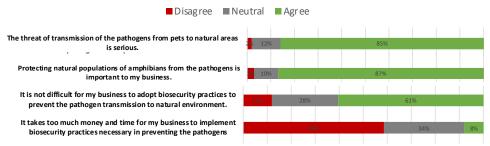
13

U.S. Businesses: Biographics

- Majority of businesses use disinfectants (92%).
 disposable gloves when harming arminas (60%), and quarantine new shipments (66%).
- Few businesses (<25%) tes

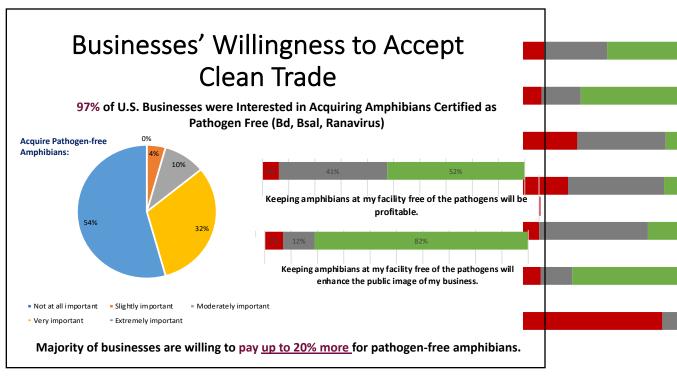
 for pathogen infection.

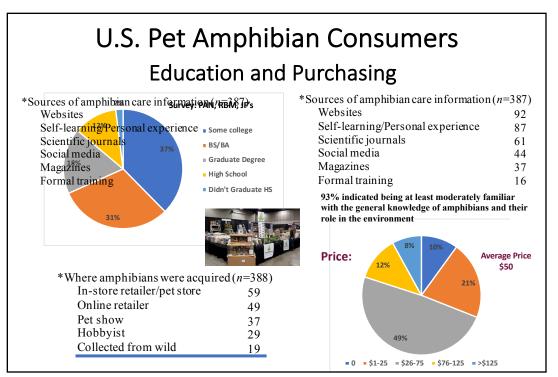
 Outreach = Importance of testing new arrivals
- 75% of businesses don't de aquarium contents, which can be a pathway for pathogen spillover to wild population



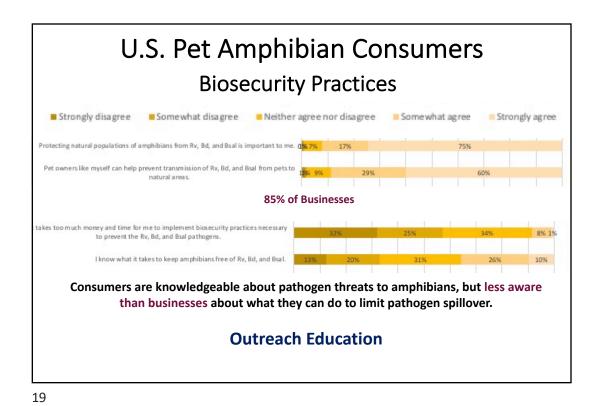
15

to natural areas is beyond an individual firm's control.


U.S. Business Knov Toward Biosecurity



U.S. Businesses understand the threat but some are hesitant to incorporate biosecurity practices because it is difficult (lack of knowledge) or costs time/money


to natural areas is beyond an individual feducation Outreach

to natural areas Costard Hareir (Gov't Subsidized) Programs

uired (n=388)

Consumers: Amphibian Death & Disposal

<u>Dead</u>: Nearly 80% of respondents reported having had a pet amphibian die. Disposal techniques included burying (61%), placing in the garbage (21%), flushing down the toilet (3%), leaving the animal outdoors (3%).

 Unwanted: Most (59%) of those who had been unable to keep an amphibian indicated they had given away or sold their animal, 8% each indicated they had taken their animal to a rescue facility/pet amnesty event or returned to where it was acquired, while 5% reported euthanizing the animal.

Consumer Support for Clean Trade

- Over half (52%) of respondents indicated if they were to acquire another pet amphibian in the future, it would be extremely important the animal is free of the pathogens and another 27% indicated very important;
- Three-quarters (76%) of the respondents indicated, when acquiring an amphibian, they would be willing to pay more for an animal that is certified free of the pathogens.

Turnbull lower-bound mean WTP for certified pathogen-free amphibians, compared to non-certified amphibians:

Avg Cost = \$50 (77% higher cost)

\$25 to test Bd, Bsal, Rv

Profit = \$13 / amphib Increase Profits 26%!

=\$38.65 per animal (in 2021 USD)

21

Summary

- Businesses and consumers are aware of pathogen threats, but they (esp. consumers) need to be informed about biosecurity practices.
- Businesses and consumers are willing to participate and place value on acquiring pathogen-free amphibians.
 - Businesses were willing to pay up to 20% more.
 - Consumers were willing to pay up to 77% more.
- Profit margin = 26% increase to sell pathogen-free amphibians.

Our results support:

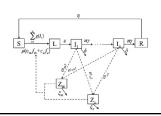
- Industry-led, Market-supported Healthy Trade Certification Program for Amphibians
- Outreach Education on Biosecurity Practices (quarantine, testing, disposal of aquarium contents and animals).

https://www.healthyamphibiantrade.org/

Name	Organization
Anibal Armendaris	Pet Smart
Molly Bletz	University of Massachusetts
Zach Brinks	Josh's Frogs
Jesse Brunner	Washington State University
John Clare	Caudata.org
Devin Edmonds	University of Illinois
Mark George	Reptiles by Mack
Matt Gray	University of Tennessee
Scott Hardin	Pet Advocacy Network
Tim Herman	Indoor Ecosystems
Josh Jones	Pet Advocacy Network
Jonathan Kolby	Former FWS Import Inspector
Pat Kline	Frog Depot
John Mack	Reptiles by Mack
Neil Moherman	Reptiles by Mack
Marshall Myers	Advisory Council
Allan Pessier	Washington State University
Neelam Poudyal	University of Tennessee
Jose Salmeron	Two Amigos Import & Export, Inc.
Tom Waltzek	USDA - APHIS
Alexa Warwick	Michigan State University
Josh Willard	Josh's Frogs

23

University of Tennessee Center for Wildlife Health


Amphibian Disease Laboratory

https://amphibiandisease.tennessee.edu/

https://www.facebook.com/UTIAAmphibianDiseaseLab

Research

Diagnostic Services

Lead Scientists

- Matt Gray, Ph.D., mgray11@utk.edu
- Deb Miller, DVM, Ph.D., dmille42@utk.edu
- · Mark Wilber, Ph.D., mwilber@utk.edu
- Wesley Sheley, DVM, Ph.D., wsiniard@utk.edu
- Davis Carter, Ph.D., ecarte27@utk.edu

Outreach/Guidance

